

PIPELINE OXYGEN TRANSMITTER

LETTER of AGREEMENT

Basic communication parameters

Code	8-bit binary
Data bit	8-bit
Parity bit	no
Stop bit	1 person
Error checking	CRC (Redundant Cyclic Code)
Baud rate	1200bit/s \ 2400bit/s \ 4800bit/s \ 9600 bit/s \ 19200 bit/s \ 38400 bit/s \ 57600 bit/s \ 115200 bit/s \ Default: 4800bit/s

Data frame format definition

Modbus-RTU communication protocol is adopted, the format is as follows:

Initial structure \geq 4 bytes of time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC

Ending structure \geq 4 bytes of time

Address code: It is the address of the transmitter, which is unique in the communication network

(factory default 0x01).

Function code: The function instruction of the command issued by the host, this transmitter only

uses the function code 0x03 (reading register data).0x06, 0x10 (write register data).

Data area: The data area is the specific communication data,

pay attention to the high byte of 16bits data first!

CRC code: two-byte check code.

Host query frame structure:

Address	Function code	Register start	Register length	Check code low	Check code high
1byte	1byte	2byte	2byte	1byte	1byte

Slave machine response frame structure:

Address	Function code	Effective bytes	Data area	Second data area	Nth data	Check code
1byte	1byte	1byte	2byte	2byte	2byte	2byte

Register Address

Register	PLC or	content	operating	Scope and definition
address	configuration			
	address			
0000 H	40001	Oxygen	Read only	0~250
0002 H	40003	concentration		(Value after 10 times)
		value		
0038 H	40057	Oxygen	Read and	Write after 10 times
		calibration value	write	expansion
07D0 H	42001	Device address	Read and	1~254
			write	(Factory default 1)
07D1H	42002	Device baud rate	Read and	0 means 2400
			write	1 means 4800
				2 for 9600

Communication protocol example and explanation

Read the address and baud rate of the device with address 0x01

Inquiry frame (for example: address is 0x01 and baud rate is 4800)

Address code	Function code	Starting address	Data length	Check code low	Check code high
0x01	0x03	0x07 0xD0	0x00 0x02	0xC4	0x86

Reply frame

li							
	Address	Function	Effective	Baud rate	Address	Check code	Check code
	code	code	bytes			low	high
	0x01	0x03	0x04	0x00 0x01	0x00 0x01	0x6A	0x33

Change address

Inquiry frame (assuming the modified address is 0x02 Note: power off and restart the device after modifying the address)

Address code	Function code	Starting address	Modify value	Check code low	Check code high
0x01	0x06	0x07 0xD0	0x00 0x02	0x08	0x86

Reply frame

Address code	Function code	Starting address	Modify value	Check code low	Check code high
0x01	0x06	0x07 0xD0	0x00 0x02	0x08	0x86

Modify the baud rate of address 0x01

Inquiry frame (assuming to modify the baud rate to 9600. Note: power off and restart the device after modifying the address)

Address code	Function code	Starting address	Modify value	Check code low	Check code high
0x01	0x06	0x07 0xD1	0x00 0x02	0x59	0x46

Reply frame

Address	Function	Starting	Modify	Check code	Check code
code	code	address	value	low	high
0x01	0x06	0x07 0xD1	0x00 0x02	0x59	0x46

Read the O2 value of the device address 0x01

Inquiry frame (single oxygen equipment can read 00 register or 02 register, three-in-one equipment can only read 02 register)

Address	Function code	Starting address	Data length	Check code low	Check code
0x01	0x03	0x00 0x02	0x00 0x01	0x25	0xCA

Response frame (for example, read oxygen as 10%Vol)

	Address	Function	Returns the number of valid bytes	O2 value	Check code	Check code
ľ	0x01	0x03	0x02	0x00 0x64	0xB9	0xAF

02:

0064(Hexadecimal) =100=>O2=10%Vol

Conversion relationship between oxygen measurement unit Vol and ppm, mg/m3

The conversion formula is based on 25°C and 1 atmosphere pressure: X ppm = (Y mg/m3)(24.45)/(molecular weight) or Y mg/m3 = (X ppm)(molecular weight)/24.45

Only applicable for calculating oxygen (O2):

1%Vol = 10000ppm 1ppm = 1.31mg/m3