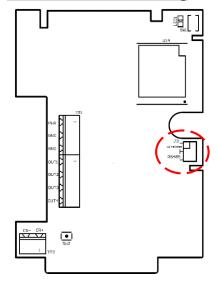
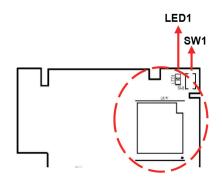

Introduction


In most public space or office buildings, the air ventilation and air quality is poor. The ADC-M series can detect several important parameters of indoor air quality and environment, such as CO₂, CO, HCHO, O₂, NH₃, TVOC, PM_{2.5}, PM₁₀, temperature and humidity. Easy installation and the recommended height of installation is 1~2M above the floor level. It uses good quality sensors; such as the NDIR CO₂ sensor; electro-chemical sensor for HCHO, CO, O₂ and NH₃; laser scattering principle sensor for PM_{2.5} and PM₁₀; CMOS sensor for TVOC, temperature and humidity. ADC-M can be used with a monitoring system, which can activate ventilation system to keep a better indoor air quality or for energy saving. It is perfect for school, library, offices, meeting room, commercial building, shopping center, train/subway station or exhibition hall and etc.

Wiring

Notice: Please remove power from the unit before wiring, in order to avoid any damage or hazard.

Transmission mode setting



Jumper setting:

Transmission mode setting (Wireless/RS485)

Transmission mode	J3
Wireless	
RS485	

Join a wireless network (Only available for wireless version)

If the transmission mode is set as "Wireless", please follow the steps as below to establish the connection between transmitter and receiver.

- 1. Please make sure the wireless receiver has been connected with PLC or with computer. (Please refer the manual of wireless receiver for the detail operation.)
- Please press and hold the SW1 on wireless module until the LED1 (Green) is ON.
 And it will activate the pairing procedure and complete the connection within 60 sec.
- 3. When the LED1 switches off, the connection between the transmitter and receiver has been done. If the LED1 blinks every 5 secs, the connection fails. Then please repeat the above-mentioned steps.

Modbus RTU settings

- 1. Default setting: Device ID=1; Baud rate = 9600; Word Length = 8; Parity = none; Stop Bits = 1
- 2. Checksum is the error detection codes for CRC-16/MODBUS.
- 3. The measurement will be varied depending on detection functions of the model. The measurement value would be displayed as "0" if there is no corresponding detection function.

Command 0x04: Read input registers

Reading data type

Device ID	Function	Address (High byte)	Address (Low byte)	Data Length (High byte)	Data Length (Low byte)	Checksum (High byte)	Checksum (Low byte)
By setting	0x04	0x00	0x00	0x00	0x0A	0xXX	0xXX

Responding data type

Device ID	Function	Data byte	Data (High byte)	Data (Low byte)	Data (High byte)	Data (Low byte)	Checksum (High byte)	Checksum (Low byte)
By setting	0x04	0x14	0xXX	0xXX			0xXX	0xXX

Reading data register

Data (High byte)	Data (Low byte)	Description	Remark
0x00	0x00	CO ₂ value	Decimal, Unit: ppm
0x00	0x01	PM _{2.5} value	Decimal, Unit: ug/m³
0x00	0x02	PM ₁₀ value	Decimal, Unit: ug/m³
0x00	0x03	CO value	Decimal, Unit: ppm
0x00	0x04	HCHO value	Decimal, Two decimal places, Unit: ppm
0x00	0x05	NH ₃ value	Decimal, One decimal place, Unit: ppm
0x00	0x06	O ₂ value	Decimal, Two decimal places, Unit: %
0x00	0x07	TVOC value	Decimal (IAQ)
0x00	0x08	Temperature value	Decimal, Two decimal places, Unit:°C
0x00	0x09	Humidity value	Decimal, Two decimal places, Unit: %RH

Remark:

The data obtained of HCHO, O2, temperature or humidity has to be divided by 100 to get the measurement value; the data obtained of NH3 has to be divided by 10 to get the measurement value.

For example, the temperature data obtained is 2600 which has to be divided by 100, and the measurement value is 26.00°C.

Command 0x03: Read holding registers

Reading data type

Device ID	Function	Address (High byte)	Address (Low byte)	Data Length (High byte)	Data Length (Low byte)	Checksum (High byte)	Checksum (Low byte)
By setting	0x03	0x00	0x00	0x00	0x0D	0xXX	0xXX

Responding data type

Device ID	Function	Data byte	Data (High byte)	Data (Low byte)	Data (High byte)	Data (Low byte)	Checksum (High byte)	Checksum (Low byte)
By setting	0x03	0x1A	0xXX	0xXX	•••	•••	0xXX	0xXX

Command 0x06: Write single register

To calibrate 27°C to 27.30°, the correction value is (27.30 - 27.00) *100 = 30. And convert it into 0x001E (hexadecimal). Writing data type

Device ID	Function	Address (High byte)	Address (Low byte)	Modify value (High byte)	Modify value (Low byte)	Checksum (High byte)	Checksum (Low byte)
By setting	0x06	0x00	0x08	0x00	0x1E	0xXX	0xXX

Responding data type

Device ID	Function	Address (High byte)	Address (Low byte)	Modify value (High byte)	Modify value (Low byte)	Checksum (High byte)	Checksum (Low byte)
By setting	0x06	0x00	0x08	0x00	0x1E	0xXX	0xXX

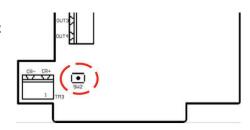
Modifying data register

Data address (High byte)	Data address (Low byte)	Description	Default	Adjustable minimum Range	Adjustable maximum Range
0x00	0x00	CO ₂ manual calibration	0	-70 ppm	+70 ppm
0x00	0x01	PM _{2.5} manual calibration	0	-150 ug/m ³	+150 ug/m ³
0x00	0x02	PM ₁₀ manual calibration	0	-150 ug/m ³	+150 ug/m ³
0x00	0x03	CO manual calibration	0	-5 ppm	+5 ppm
0x00	0x04	HCHO manual calibration	0	-50 (-0.5ppm)	+50 (+0.5ppm)
0x00	0x05	NH ₃ manual calibration	0	-50 (-0.5ppm)	+50 (+0.5ppm)
0x00	0x06	O ₂ manual calibration	0	-500 (-5.00%)	+ 500 (+5.00%)
0x00	0x07	TVOC manual calibration	0	-100	+100
0x00	0x08	Temperature manual calibration	0	-1000 (-10.00°C)	+1000 (+10.00°C)
0x00	0x09	Humidity manual calibration	0	-1000 (-10.00%RH)	+1000 (+10.00%RH)
0x00	0x0A	Sampling interval	2	1	3600
0x00	0x0B	Baud rate	0 Please refer to "Baud rat and connection sett		and connection setting"
0x00	0x0C	Device ID	1	1	247

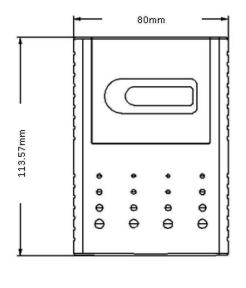
Remark:

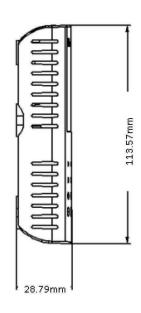
These any gas concentration to be adjusted by a fixed register, the data shows the concentration value plus current offset value. For example, the CO_2 concentration data is 700, and CO_2 manual calibration is -70, the value is (700-70) = 670 ppm.

Baud rate and connection setting


To change baud rate from 9600 to 19200, and set the connection setting as 8/E/2, the command would be "0x1011".

Settings	Device ID	Function	Address (High byte)	Address (Low byte)	Data (High byte)	Data (Low byte)	Checksum
9600	By setting	0x06	0x00	0x0B	0x00	-	XXXX
19200	By setting	0x06	0x00	0x0B	0x10	-	XXXX
38400	By setting	0x06	0x00	0x0B	0x20	-	XXXX
57600	By setting	0x06	0x00	0x0B	0x30	-	XXXX
115200	By setting	0x06	0x00	0x0B	0x40	-	XXXX
8/N/1	By setting	0x06	0x00	0x0B	-	0x00	XXXX
8/N/2	By setting	0x06	0x00	0x0B	-	0x01	XXXX
8/E/1	By setting	0x06	0x00	0x0B	-	0x10	XXXX
8/E/2	By setting	0x06	0x00	0x0B	-	0x11	XXXX
8/0/1	By setting	0x06	0x00	0x0B	-	0x20	XXXX
8/0/2	By setting	0x06	0x00	0x0B	-	0x21	XXXX

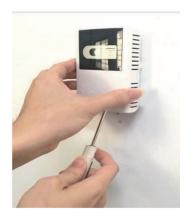

^{*} Notice : If the transmission mode is set as "Wireless", please set the band rate as 9600 and the connection setting as 8/N/1.


Reset to default settings

To reset all the settings to default, please press and hold SW2 for $5\ {\rm sec.}$

Dimensions

^{*} Remark: The connection setting format is Word length / Parity / Stop bits; Parity: N = None, E = Even, O = Odd


Installation

- 1. Please check if the transmitter, accessory pack and instruction manual are included in the package.
- 2. Please decide right position for installation.
- 3. Press tenon on bottom of the housing with a screw driver to remove the upper cover. (Please refer to the Figure 2 to Figure 4).
- 4. Fix the base with screws on the wall.
- 5. Please refer Figure 1 for wiring.

Notice: Please remove power from the unit before wiring, in order to avoid any damage or hazard.

6. Place and fix the upper cover back to the unit.

[Figure 2]

[Figure 3]

[Figure 4]

Notice for installation

- 1. Please install the transmitter at a height of 1~2M above the floor level and the location with relatively stable air circulation, without turbulent airflow.
- 2. Do not mount the transmitter near doors, opening windows, fans, air outlet, elevator entrance, or other known air disturbances. Install the transmitter at least 3 meters away from any air outlets.
- 3. Please avoid the waterish area and direct sunlight.
- 4. Do not install the transmitter on an unstable or shaking surface.
- 5. Please do not install the transmitter in areas with rapid temperature changes or with extreme ambient conditions.
- 6. Please keep away from the devices generating heat or emitting exhaust.

Trouble shooting

Problem	Possible cause	Recommended solution
No response after wiring newer	1. Insufficient power supply	1. Please make sure the power supply should be
No response after wiring power	2. The power wiring is	more than $3W(RS485) \cdot 4.5W(LoRa)$.
supply	disconnected.	2. Check power wiring
	1. Incorrect device ID setting or	1. Please verify the device ID and connection
RS485 connection fails	incorrect connection settings.	settings.
R5483 Connection fails	2. RS485 wiring is	2. Check RS485 wiring.
	disconnected.	3. Reset to default settings.
	Signal interference	1. It is recommended to use 2 pair twisted
High loss rate of packet for RS485	2. RS485 wiring is	shielded cable.
	disconnected.	2. Check RS485 wiring.
		1. Please check if antenna is fixed.
Fail to pair with LoRa devices	1. The antenna is not fixed.	2. Please relocate the LoRa devices to avoid the
	2. There is some interference	interference.
The loss rate of packet is high	around.	3. Use signal test software to choose a better
The 1000 rate of packet is high		location to install the LoRa devices.